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Abstract

The ability to understand visual concepts and replicate and
compose these concepts from images is a central goal for
computer vision. Recent advances in text-to-image (T2I)
models have lead to high definition and realistic image qual-
ity generation by learning from large databases of images
and their descriptions. However, the evaluation of T2I models
has focused on photorealism and limited qualitative measures
of visual understanding. To quantify the ability of T2I mod-
els in learning and synthesizing novel visual concepts (a.k.a.
personalized T2I), we introduce CONCEPTBED, a large-scale
dataset that consists of 284 unique visual concepts, and 33K
composite text prompts. Along with the dataset, we propose
an evaluation metric, Concept Confidence Deviation (CCD),
that uses the confidence of oracle concept classifiers to mea-
sure the alignment between concepts generated by T2I gener-
ators and concepts contained in target images. We evaluate vi-
sual concepts that are either objects, attributes, or styles, and
also evaluate four dimensions of compositionality: counting,
attributes, relations, and actions. Our human study shows that
CCD is highly correlated with human understanding of con-
cepts. Our results point to a trade-off between learning the
concepts and preserving the compositionality which existing
approaches struggle to overcome. The data, code, and inter-
active demo is available at: https://conceptbed.github.io/

1 Introduction
Humans reason about the visual world by aggregating en-
tities that they see into “visual concepts”: both cats and
elephants are animals, and both palms and pines
are trees. We use natural language to describe images
and things that we see. Although this type of visual con-
cept learning is well-defined in human psychology (Murphy
2004), it remains elusive in the context of data-driven tech-
niques capable of learning and reasoning from images and
their natural language descriptions.

Text-to-Image (T2I) generative models are trained to
translate natural language phrases into images that corre-
spond to that input. High-quality T2I models, therefore,
serve as a link between human-level concepts (expressed in
natural language) and their visual representations and are
one way to reproduce visual concepts. On the other hand,
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Figure 1: Visual concept learners such as textual inversion
models learn to “invert” a set of images (about a concept c)
into a text embedding V∗, and then use this learned textual
concept in new text prompts to generate images of concept c
under different contexts and by performing novel compo-
sitions with other concepts. The proposed CONCEPTBED
dataset along with the evaluation metric CCD allows us to
comprehensively and quantifiably evaluate concept learning
abilities of text-to-image diffusion models.

this has also sparked interest in visual concept learning
(a.k.a. personalized T2I) through the procedure of “image
inversion” – to translate one or many images corresponding
to a visual concept into a latent representation of that visual
concept. While earlier methods primarily explored image
inversion using generative adversarial networks (Xia et al.
2022), methods such as Textual Inversion (Gal et al. 2022)
and Dreambooth (Ruiz et al. 2022) combine image inver-
sion with T2I – this has led to an effective way to quickly
learn concepts from a few images and reproduce them in
novel combinations and compositions with other concepts,
attributes, styles, etc. These methods aim to learn concepts
with minimal reference images by fine-tuning pre-trained
text-conditioned diffusion models (Figure 1). Therefore this
paradigm of T2I and image inversion is a powerful new way
of learning and reproducing concepts.

Within this paradigm of novel visual concept learning
via image inversion, two primary evaluation criteria have
emerged: (1) concept alignment, which assesses the corre-



spondence between the generated images and the target con-
cept images, and (2) composition alignment, which evalu-
ates whether the generated images maintain compositional-
ity. Previous studies have been small scale, evaluating only
a small number of hand-picked concepts and compositions;
as such making generic claims via such findings is diffi-
cult. Furthermore, the established evaluation metrics such as
DINO-based cosine similarity (Ruiz et al. 2022) (for mea-
suring concept alignment), KID (Kumari et al. 2022) (for
measuring the amount of concept overfitting), and CLIP-
Score (Hessel et al. 2021) (for evaluating compositionality),
have encountered challenges in accurately capturing human
preferences. Consequently, there is a growing need for better
automated evaluations.

Therefore, we introduce CONCEPTBED, comprehensive
dataset and evaluation framework that is aligned with hu-
man preferences. The CONCEPTBED dataset comprises 284
distinct concepts and approximately 33,000 composite text
prompts, which can be further extended using the provided
automatic realistic dataset creation pipeline. The dataset fo-
cuses on four diverse concept learning evaluation tasks:
learning styles, learning objects, learning attributes, and
compositional reasoning. To gain a deeper understanding of
previous methodologies, we incorporate four composition
categories – action, attribution, counting, and relations.

We use our large-scale dataset to evaluate concept learn-
ers, by developing a novel evaluation metric called Concept
Confidence Deviation (CCD). We conduct a human study
and find that relative evaluations of models in terms of CCD
are well aligned with human preferences. Therefore, CCD
combined with the CONCEPTBED dataset, offers an alterna-
tive to existing evaluation strategies, facilitating more effec-
tive large-scale evaluations. For each evaluation criteria, we
train supervised classifiers (oracles) to detect whether gen-
erated concept images are accurate. Subsequently, the con-
fidence scores from these oracles are utilized to calculate
the instance-level concept deviations of the generated con-
cept images in relation to the reference target ground truth
images using the proposed CCD metric. This approach en-
ables us to assess concept and composition alignment more
effectively. We further show that CCD calculated using a pre-
trained few-shot classifier also maintains a high correlation
with human preferences. This allows CCD to measure con-
cept alignment on unseen concepts.

We conduct extensive experiments on four recently pro-
posed concept learning methodologies. In total, we fine-tune
approximately 1100 models (one model per concept) and
generate over 500,000 concept-specific images. Our results
reveal a surprising trade-off between concept alignment and
composition alignment, wherein methods excelling at con-
cept alignment tend to fall short in preserving compositions
and vice versa. This suggests that previous concept learning
approaches are either highly overfitted or severely underfit-
ted. Furthermore, our experiments demonstrate that utilizing
a pre-trained CLIP (Radford et al. 2021) textual encoder aids
in maintaining compositionality, but it lacks the flexibility
required to learn complex concepts, such as sketch.

In summary, we make the following key contributions:
• We introduce CONCEPTBED, a comprehensive bench-

ConceptBed DatasetDomain
Art Painting

Cartoon
Photo
Sketch

4 concepts

Attributes

Yellow Wing
Orange Beak
Brown Eyes

112 attributes

Objects
Dogs
Cats
Monkeys

Aircraft
Boat
Bottle

Car
Clock
Fish

Fruit
Bird
…

80 concepts

ConceptBed Compositions
Relation

16902 Prompts

V* with fish
V* sitting in bucket
A horse beside V*

Attribute

18987 Prompts

V* with red beak
V*’s ears are up
A red V* eating

Action

8014 Prompts

V* is licking herself
V* is running
A red V* eating

Counting

1083 Prompts

Two V* sitting
A photo of three V*
Two V* with a cat

Total: 284 unique concepts

Figure 2: A summary of the CONCEPTBED dataset for large-
scale grounded evaluations of concept learners. The collec-
tion of concepts is categorized into three classes: (1) Do-
main, (2) Objects, and (3) Attributes. CONCEPTBED has 284
unique concepts and four compositional categories. Here,
V* is a learned concept.

mark for grounded quantitative evaluations of text-
conditioned concept learners.

• The Concept Confidence Deviation (CCD) evaluation met-
ric, measures the learners’ ability to preserve concepts and
compositions. We demonstrate a strong correlation be-
tween CCD and human preferences.

• Through extensive experiments with 1,100+ models, we
identify shortcomings in prior works and suggest future
research directions. CONCEPTBED sets a standard for
evaluating personalized text-to-image generative models.

2 Preliminaries
Prior studies on concept learning have focused on text-
conditioned diffusion models, such as Textual Inversion (Gal
et al. 2022), DreamBooth (Ruiz et al. 2022), and Custom
Diffusion (Kumari et al. 2022). These models operate within
the T2I paradigm, where a text prompt (y) serves as input
to generate the corresponding image (xgen) representing the
given prompt y. A popular approach within T2I is the La-
tent Diffusion Model (LDM) (Rombach et al. 2022), which
incorporates two key modules:

1. Textual Encoder (Cθ): This module generates embed-
dings corresponding to the input text prompt;

2. Generator (ϵϕ): The generator estimates the noise itera-
tively from the input randomly sampled matrix at times-
tamp t (zt), conditioned on the text.

Since T2I models solely consider text input, the target
concept (c) is represented in terms of text tokens. These to-
kens can subsequently be employed to generate images as-
sociated with concept c. Therefore, in Textual Inversion, the
concept learning task is approached as an image inversion
problem, aiming to map the target concept back to the text-
embedding space.

Let V* denote the text tokens corresponding to the learned
concept c. Once the optimal mapping from V* to the target
concept is determined, we can generate concept-specific im-
ages using the LDM by providing V* in the text prompt.



Algorithm 1: Concept Confidence Deviation

Input: Concept fine-tuned models G ∈ {gc}, c ∈ CCONCEPTBED;
Oracles Ft ∈ {FPAC , FImagenet, FCUBS , FV QA};
Reference set of concept images Xref ∈ {xc};
Target set of prompts Y ∈ {yc};

Output: Estimated CCD
1: Initialize: score = []; preal = []
2: for c ∈ CCONCEPTBED do
3: preal = []
4: if t = V QA then
5: c = 3
6: for x = 1 . . .M do
7: preal ← Ft(xi, c)

8: p̄real = 1
M

∑M
i=1 p

real
i

9: for n = 1 . . . N do
10: xgen = gc(yc)
11: score← −1 ∗ (F (xgen, c)− p̄real) {// Eq. 3}
12: CCD = 1

NC

∑NC
i=1 scorei

Suppose we are provided with m images (X1:m) of the tar-
get concept c. Now, in order to learn the text tokens V* cor-
responding to the concept c from the set of images X1:m, the
Textual Inversion methodology aims to optimize V* by re-
constructing X1:m using the objective function of the LDM
with frozen parameters θ and ϕ:

V ∗ = argmin
v

E
x∈X1:m, t,

ϵ∼N (0,1), z∼E(x)

||ϵ− ϵϕ(zt, t, x, Cθ(y))||22 (1)

In the case of DreamBooth and Custom Diffusion, instead
of finding the optimal V*, it optimizes the model parameter
ϕ associated with the noise estimator (ϵϕ). This optimization
process enables the model to learn the mapping between ran-
domly initialized V* and the target concept c.

ϕ∗ = argmin
ϕ

E
x∈X1:m, t,

ϵ∼N (0,1), z∼E(x)

||ϵ− ϵθ(zt, t, x, Cϕ(y))||22 (2)

Once ϕ∗ is obtained, it can be used to generate images re-
lated to the target concept.1

Once the images are generated, in order to evaluate these
generated images, it is essential to verify whether they align
with the learned concepts while maintaining compositional-
ity.

3 CONCEPTBED
In this section, we introduce CONCEPTBED, a compre-
hensive collection of concepts, designed to accurately es-
timate concept and composition alignment by quantifying
deviations in the generated images. Later, we introduce the
novel evaluation framework associated with CONCEPTBED.
Please refer to the Appendix for additional insights on the
proposed dataset and evaluation framework.

1DreamBooth and Custom-Diffusion use additional regularizer
to improve compositionally by using same objective function on a
diverse set of image-caption pairs.

A photo of a dog in the style of V*

Textual Inversion 
(LDM)

Textual Inversion 
(SD) DreamBooth Custom DiffusionInput Reference 

Concepts: V*

V* flying in the sky.

Two V* sitting on a tree branch.

V* is sitting in the grass.

Man driving V*.

Cat is in the V*.

Figure 3: Qualitative examples showcasing the effectiveness
of concept learners on the CONCEPTBED dataset. The left-
most column displays four instances of ground truth tar-
get concept images (V*). Subsequent columns exhibit target
concept-specific images generated by all baseline methods.

3.1 CONCEPTBED: Dataset Construction
CONCEPTBED incorporates existing datasets such as Ima-
geNet (Deng et al. 2009), PACS (Li et al. 2017), CUB (Wah
et al. 2011), and Visual Genome (Krishna et al. 2017), en-
abling the creation of a labeled dataset. Figure 2 provides an
overview of the CONCEPTBED dataset.
Learning Styles. We use styles from the PACS dataset: Art
Painting, Cartoon, Photo, and Sketch. Each style
contains images corresponding to seven categories. The con-
cept learner aims to use examples from one style as a refer-
ence and generate style-specific images for all seven entities.
Learning Objects. Extracting object-level concepts is ac-
complished through the utilization of the ImageNet dataset.
It comprises 1000 low-level concepts from the Word-
Net (Fellbaum 2010) hierarchy. However, due to the pres-
ence of noise in ImageNet images and the lack of relevance
to daily life for many concepts, we employ an automated
filtering pipeline to ensure the usefulness and quality of the
reference concept images. The pipeline involves extracting
a list of low-level concepts and their parent concepts from



Concept Confidence Deviation (CCD)

Figure 4: Intuitive illustration of the Concept Confidence
Deviation (CCD) for the concept Art Painting. Blue
and Orange are the probability distributions of the real and
generated concept images.

ImageNet, followed by extracting text phrases from Visual
Genome containing the concept as a subject in the caption.
If an insufficient number of such captions exists (less than
10 in Visual Genome) or they cannot be found, the concepts
are discarded. This filtering process results in 80 concepts
such as (brambling, squirrel monkey, etc.). We se-
lect the top 100 high-quality images for each concept that
will be used to train the concept learning methodologies.
Learning Attributes. Since ImageNet dataset images are
not labeled based on the attributes present in the image,
it is necessary to rely on datasets that provide attribute-
level grounded labels. Therefore, we additionally employ
the CUB dataset, which offers attribute-level labels (such
as orange wing, blue forehead, etc.), enabling the
CONCEPTBED to perform evaluations and measure the
attribute-level performance of concept learners.
Compositional Reasoning. In addition to learning new con-
cepts, it is crucial to maintain prior knowledge and associate
the acquired concepts with it. To conduct these evaluations
holistically, we use Visual Genome to extract captions in
which the concept appears as the subject of the sentence.
These captions are categorized into four composition cat-
egories (actions, attributes, counting, and relation) through
few-shot classification using GPT3 (Brown et al. 2020). This
categorization allows us to measure the performance of the
baselines on each category, and an in-depth understanding
of the varying difficulty levels of different compositions.

3.2 CONCEPTBED: Dataset Statistics
The CONCEPTBED dataset consists of 284 unique concepts,
comprising 80 concepts from ImageNet, 200 concepts from
CUB, and 4 concepts from PACS. In total, the dataset con-
tains approximately 33,000 composite prompts for the eval-
uation of all 80 processed concepts from ImageNet, with
each composite prompt having up to two composition cat-
egories. Out of these composite prompts, 18987, 16902,
8014, and 1083 prompts contribute to the attribute, relation,
action, and counting categories, respectively.

Our dataset curation pipeline is flexible to be extended to
larger datasets such as OpenImages-v7 (Kuznetsova et al.

2020) and LAION-5B (Schuhmann et al. 2022). However, it
is important to note that this extension would significantly
increase the resource requirements. With the introduction
of this dataset, our primary objective is to provide a stan-
dardized and benchmarked evaluation framework for con-
cept learners, enhancing research in the field.

3.3 CCD: Concept Confidence Deviation
Problem Statement. Consider a pre-trained text-
conditioned diffusion model g(·), which can be further
fine-tuned on a specific concept c such that c ∈ CCONCEPTBED.
We assume the availability of concept-specific tar-
get images from the CONCEPTBED dataset, denoted
as Dreal

c ∈Dtest
CONCEPTBED. Denote the concept learner

g(·) fine-tuned on concept c using Dreal
c as gc(·).

First, we generate a collection of N images using the
learned concept c, and denote this set of images as
Dgen

c ={xgen
i =gc(p

i
c, s

i); ∀i ∈ [0, N ]}, where pic is the
concept-specific prompt and s is the random seed.

The alignment between two distributions (i.e., Dreal
c and

Dgen
c ) is typically computed by first extracting features

from the model m (i.e., freal=m(Dreal); fgen=m(Dgen))
and then employing a distance metric d (i.e., score =
d(freal, fgen)). Several combinations of models (m) and
distance measures (d) have been used in prior work. For
concept alignment, Ruiz et al. (2022) use m=DINO with
d=Cos and Kumari et al. (2022) use m=Inception with
d=KID. For composition alignment, all prior work utilizes
m=CLIP with d=Cos. However, these methods fail to ac-
curately capture the concept deviations within the generated
images; rendering them ineffective in comparing perfor-
mance across the methodologies (as shown in Section 4.2).

Concept Confidence Deviation (CCD). To address the
above limitations, we propose training the oracle classifier
F , specifically for the concept detection task using the CON-
CEPTBED training dataset, Dtrain

CONCEPTBED. Then one can sim-
ply use m = F and d = Accuracy to verify whether xgen is
aligned with xreal. However, measuring accuracy does not
allow instance-level evaluations. By leveraging the output
probabilities of the oracle (concerning the concept label yc),
we can estimate the deviations associated with each gener-
ated image xgen w.r.t. the output probabilities of real target
images xreal. Concept Confidence Deviation is defined as:

CCD = −E
c

[
E

xgen

[
F (yc|xgen)− E

xreal

F (yc|xreal)
]]
. (3)

CCD first calculates the mean target probability on the
test ground truth images and then measures the difference
in probability of the generated images. CCD with negative
or close to 0.0 values indicates that the generated images
closely follow the distribution of the ground truth concept
images. A positive CCD value suggests that the generated
images deviate from the original distribution. Figure 4 shows
an intuitive example of CCD by calculating the distance be-
tween two probability densities corresponding to the real
and generated target concept.



Model Concepts Fine-grainedCUB Composition
DomainPACS ObjectsImageNet Object-level Attribute-level

TI (LDM) 0.0478 0.0955 0.2289 0.1174 0.1906
TI (SD) 0.2456 0.0472 0.0859 0.0332 0.1090
DB 0.6825 0.0678 0.0963 0.0469 0.3527
CD 0.6206 0.2085 0.3934 0.1743 0.4916

Original 0.0000 0.0000 0.0000 0.000 0.0000

Table 1: Results of Concept Alignment Evaluation. The table shows the performance of concept learners evaluated using
the CCD (↓) metric for Concepts (DomainPACS, and ObjectImageNet), Fine-grainedCUB (Object-level, and Attribute-level), and
Composition. The best and worst performing models are indicated by bold and underlined numbers, respectively.

Models Relation Action Attribute Counting
CLIP VQA. CCD CLIP VQA CCD CLIP VQA. CCD CLIP VQA. CCD

TI (LDM) 0.6589 66.60% 0.2074 0.6523 68.69% 0.2098 0.6599 72.22% 0.1331 0.6515 65.78% 0.1231
TI (SD) 0.6294 70.09% 0.1735 0.6274 70.81% 0.1884 0.6360 74.75% 0.1091 0.6301 68.38% 0.1020
DB 0.7051 82.20% 0.0542 0.6995 84.61% 0.0496 0.6862 82.24% 0.0355 0.6924 78.90% -0.0016
CD 0.7065 82.94% 0.0471 0.7053 86.35% 0.0347 0.6940 84.20% 0.0163 0.6921 79.36% -0.0054
SD 0.7222 83.42% 0.0403 0.7178 87.39% 0.0256 0.7053 83.85% 0.0184 0.7085 81.07% -0.0206
Original 0.6626 87.45% 0.0000 0.6831 89.78% 0.0000 0.6306 85.79% 0.0000 0.6553 78.32% 0.0000

Table 2: Compositional Reasoning Evaluation Results. The table shows the performance of the prior works for Composition
Alignment. CLIP (↑) is the traditional image-text alignment metric. VQA (↑) is the accuracy of the ViLT VQA classifier on
generated boolean questions. And CCD (↓) is the composition deviations reported from the ViLT model with respect to its
performance on original images. The best-performing model is indicated by bold numbers, while the performance that is higher
than the original data is reported with underline.

3.4 Task Specific Evaluation Settings
To efficiently leverage the CONCEPTBED evaluation
pipeline, we trained separate oracles on the corresponding
CONCEPTBED datasets. Two different types of evaluations
are conducted, each with its respective set of oracles: 1) con-
cept alignment, measured by concept classifiers, and 2) com-
positional reasoning, measured by a VQA model.

Concept Alignment: Concept alignment evaluation was
performed on all tasks, including the generated concept im-
ages with different composite text prompts. To evaluate the
style, a ResNet18 (He et al. 2015) model is trained to dis-
tinguish the images between four style concepts. To eval-
uate the objects, a ConvNeXt (Liu et al. 2022) model is
fine-tuned on 80 classes from the CONCEPTBED using the
ImageNet training subset. The Concept Embedding Model
(CEM) (Zarlenga et al. 2022) was trained on CUB to de-
tect the concepts and attributes. Images corresponding to
the concepts were generated for each task by following the
prompts: “A photo of V*” for objects and “A photo of a
<entity-name> in the style of V*” for styles. Here, <entity-
name> belongs to the seven classes from PACS. The re-
maining task, composition, utilizes the same pre-trained
ConvNeXt model for concept alignment, as CONCEPTBED
compositions are specifically for 80 ImageNet concepts.

Compositional Reasoning: To measure the image-text
alignment with respect to the input prompts, the concept-
specific token (V*) was removed and replaced with the
corresponding ground truth label (i.e., dogs, cats, etc.).
The image-text similarity was then measured. Unlike previ-

ous works, CLIP was not used due to its inability to cap-
ture compositions (Thrush et al. 2022). Instead, taking af-
ter (Cho, Zala, and Bansal 2022), we propose to use a pre-
trained ViLT (Kim, Son, and Kim 2021) as a VQA model
for composition evaluations. Specifically, from each com-
posite prompt, the boolean questions with positive answers
are generated (Banerjee et al. 2021). As ViLT is essentially
a classifier, the CCD can be calculated with respect to the
confidence of the model associated with a “yes” answer.

4 Experiments & Results
In this section, we benchmark four state-of-the-art concept
learning methodologies. We first explain the experimen-
tal setup and report the evaluation results using the CON-
CEPTBED framework along with human preferences. Addi-
tional details about the experimental setup, results, and hu-
man evaluations are in the appendix.

4.1 Experimental Setup
In our experiments, we study four text-conditioned diffusion
modeling-based concept learning strategies: Textual Inver-
sion (TI) on LDM and SD, DreamBooth (DB) (Ruiz et al.
2022), and Custom Diffusion (CD) (Kumari et al. 2022). We
generate N = 100 images for all concepts to measure the
concept alignment and N = 3 images for 33K composite
text prompts. For a total of 284 concepts, we train all four
baselines. This leads to 1100+ concept-specific fine-tuned
models and we generate a total of 500, 000 images for eval-
uations. To show the stability of CCD, we report the mean
performance across the three seeds of oracle training.



Models DomainPACS ObjectsImageNet Compositional Reasoning
DINO (↑) KID (↓) CCD (↓) H.S. (↑) DINO (↑) KID (↓) CCD (↓) H.S. (↑) CLIP (↑) CCD (↓) H.S. (↑)

TI (LDM) 0.5073 0.0117 0.0478 4.028 0.4708 0.0552 0.0955 4.069 0.6611 0.1684 2.851
TI (SD) 0.4104 0.0422 0.2456 4.084 0.4457 0.0294 0.0472 4.159 0.6309 0.1432 3.694
DB 0.3925 0.1101 0.6825 3.083 0.4525 0.0290 0.0678 4.075 0.6919 0.0344 3.556
CD 0.3956 0.0593 0.6206 3.164 0.4450 0.0492 0.2085 3.803 0.6968 0.0232 4.178

Correlation 0.6557 -0.8252 -0.9515 1.000 0.2787 -0.5347 -0.9892 1.000 0.3486 -0.7342 1.000

Table 3: Human Evaluations. Comparison of prior quantitative metrics and CCD metric with Human evaluations. DINO based
pairwise cosine similarity is the prior evaluation metric (Ruiz et al. 2022). KID was used to measure the overfitting by (Kumari
et al. 2022). CLIP (CLIPScore) is the traditional reference-free image-text similarity metric. CCD is our presented concept
deviation-aware evaluation metric. H.S. denotes the corresponding Human Score. Here, DomainPACS and ObjectImageNet evalu-
ations are for concept alignment and composition alignment is for image-text similarity. A high negative correlation between
CCD and human ratings implies strong alignment, as lower CCD and higher human ratings correspond to better performance.

Model PACS ImageNet
Domain Object Composition

TI (LDM) 72.84 64.53 58.28
TI (SD) 52.25 70.79 65.42
DB 24.71 67.45 39.42
CD 20.12 52.06 26.31

Table 4: Recall. Percentage of generated images highly
aligned (CCD <= 0.0) with the target concept images.

4.2 Results
Concept Alignment. Table 1 shows the overall perfor-
mance of the baselines in terms of CCD, where lower score
indicates better performance. First, we can observe that
CCD for concept alignment is low for the original images;
suggesting that the oracle is certain about its predictions.
Second, it can be inferred that Custom Diffusion performs
poorly, while Textual Inversion (SD) outperforms the other
methodologies except for the case of the learning styles.
We attribute this behavior to differences in textual encoders.
LDM trains the BERT-style textual encoder from scratch
while SD uses pre-trained CLIP to condition the diffusion
model. CLIP contains vast image-text knowledge leading to
better performance on learning objects but less flexibility to
learn different styles as a concept. Surprisingly, if we com-
pare the concept alignment performance with and without
composite prompts, we observe that the performance fur-
ther drops significantly for all baseline methodologies when
composite prompts are used. This shows that existing con-
cept learning methodologies find it difficult to maintain the
concepts whenever the prompt contains the composition.

Compositional Reasoning. Previously, we discussed con-
cept alignment on composite prompts. Table 2 summarizes
the evaluations on composition tasks. Here, we observe the
complete opposite trend in results. Custom Diffusion out-
performs the other approaches across the composition cat-
egories. This result shows the trade-off between learning
concepts and at the same time maintaining compositionality
in recent concept learning methodologies. Moreover, CLIP-
Score estimates the better performance of the baselines com-
pared to the original image-text pairs which are inaccurate.

Qualitative Results. Figure 3 provides the qualitative ex-
amples of the concept learning. It can be inferred that Tex-
tual Inversion (LDM) learns the sketch concept very well
(the first row), while DreamBooth and Custom Diffusion
struggle to learn it. All baselines perform comparatively well
in reproducing the learned concept (the second row). In-
terestingly, in the case of compositions, DreamBooth and
Custom Diffusion perform well with the cost of losing the
concept alignment (the last two rows). At the same time,
textual inversion approaches cannot reproduce the composi-
tions (like, “Two V*”) but they maintain concept alignment.
Overall, these qualitative examples align with our quantita-
tive results and strengthen our evaluation framework.

Human Evaluations. We perform Human Evaluations us-
ing Amazon Mechanical Turk for both types of evaluations:
1) concept alignment – to measure the alignment between
generated images and ground truth reference images on
DomainPACS and ObjectImageNet, and 2) compositional rea-
soning – to measure the image-text alignment. For concept
alignment, we ask human annotators to rate the likelihood of
the target image the same as three reference images. While
for compositional reasoning we simply ask the annotators
to rate the likelihood alignment of the image and the corre-
sponding caption. Table 3 summarizes the performance of
prior and proposed (CCD) quantitative metrics w.r.t. the Hu-
man Score. KID performs better for domains than objects as
image dynamics varies a lot in domains. (Kumari et al. 2022)
proposed to use KID with LAION-retrieved concept images
as a reference instead of ground truth due to the scarcity
of reference images. However, CONCEPTBED alleviates this
limitation. Therefore, we use actual ground truth images to
report KID which is more accurate. It can be inferred that
the CCD is strongly correlated with human preferences and
outperforms the prior evaluation metrics by a large amount.

Percentage of highly aligned instances. Using CCD, we
can further measure the recall of the concept learning mod-
els. DINO and KID metrics do not allow us to measure
the recall. Hence, it becomes hard to investigate the actual
quality of the generated images. Table 4 shows the recall
( sample with CCD<=0.0

total samples ∗100) for the concept alignment shown
in Table 1. It can be inferred that Custom-Diffusion can work



Models ConvNeXt Inception ViT Few-Shot
TI (LDM) 0.0955 0.0773 0.1165 0.0823
TI (SD) 0.0472 0.0201 0.0599 0.0489
DB 0.0678 0.0485 0.0786 0.0596
CD 0.2085 0.1845 0.2286 0.1384

Correlation -0.9892 -0.9888 -0.9816 -0.9763

Table 5: Ablation. Effect of different oracle models to mea-
sure concept alignment using CCD.

once in every four generation attempts. While Textual Inver-
sion will work at least once in every two attempts. At the
same time, when composition prompts are provided, Tex-
tual Inversion consistently maintains the concept alignment
at the cost of achieving the composition alignment.
Generalization. Fine-tuned oracles cannot be generalized to
unseen concepts; making CCD unreliable on OOD concepts.
Hence, we propose to utilize a few-shot classifier (5-way 5-
shot) instead, which can allow the generalization to unseen
concepts while maintaining a high correlation (shown in Ta-
ble 5). This shows the effectiveness of using confidence and
CCD as the alternative to the DINO, KID, and CLIP.

5 Related Work
Concept Learning. Concept learning encompasses var-
ious problem statements and approaches, depending on
the perspective adopted. Concept Bottleneck Models
(CBMs) (Koh et al. 2020) and Concept Embedding Models
(CEMs) (Zarlenga et al. 2022) treat object attributes as con-
cepts and propose classification strategies to identify these
concepts. Neuro Symbolic Concept Learner (NS-CL) (Mao
et al. 2019) aims to learn visual concepts by associating
them with language semantics, enabling the model to per-
form visual question answering. Image Inversion Style Con-
cept Learning (Xia et al. 2022), takes a different approach.
Its objective is to invert a given concept image back into
the latent space of a pre-trained model. However, text-based
concept composition is not possible for such models.
Text-to-Image Generative Models. With advances in vec-
tor quantization (Van Den Oord, Vinyals et al. 2017) and dif-
fusion modeling (Rombach et al. 2022), text-to-image gen-
eration has improved its performance. Notable works such
as DALL-E (Ramesh et al. 2021) train transformer models.
While current state-of-the-art, diffusion-based text-to-image
models such as GLIDE (Nichol et al. 2022), LDM (Rom-
bach et al. 2022), and Imagen (Saharia et al. 2022), have
surpassed prior approaches (such as StackGAN (Zhang et al.
2017), StackGAN++ (Zhang et al. 2018), TReCS (Koh et al.
2021), and DALL-E (Ramesh et al. 2021)) and achieved
superior performance. Pixart-α (Chen et al. 2023) and
ECLIPSE (Patel et al. 2023) further enhances T2I meth-
ods without depending on heavy compute. Additionally, as
shown by (Saxon and Wang 2023), these T2I models also
have multilingual concept understanding to a certain extent.
Text-to-Image Concept Learning. Text-conditioned diffu-
sion models, such as LDM, have demonstrated their poten-
tial for learning novel visual concepts with only a few refer-

ence images. Textual Inversion (Gal et al. 2022) proposes
learning the embedding corresponding to the placeholder
(V*) through optimization. DreamBooth (Ruiz et al. 2022)
suggests optimizing the UNet parameters instead of optimiz-
ing the placeholder embedding. Custom Diffusion (Kumari
et al. 2022) combines both approaches by optimizing the
placeholder and key/value weights from the cross-attention
layers for faster concept learning. These concept learners
are essentially text-conditioned diffusion models and inherit
the same limitations of diffusion models. One limitation is
the overfitting of concepts and language drift. By optimiz-
ing model parameters on a handful of reference images, it is
highly likely that the model might overfit the given concept
and cannot maintain compositionality. Therefore, in this pa-
per, we propose CONCEPTBED for systematic evaluations.

Text-to-Image Generative Model Evaluations. Evaluating
generative models is not widely studied. The FID (Heusel
et al. 2017) score is commonly used to measure gener-
ated image quality. CLIPScore (Hessel et al. 2021) is an-
other popular evaluation metric for reference-free image-
text alignment. Another study focuses on compositional
evaluations of text-to-image models on small subsets (CU-
Birds and Oxford-Flowers) (Park et al. 2021). DALL-Eval
(Cho, Zala, and Bansal 2022) evaluates reasoning skills on
synthetic datasets and social biases of text-to-image gener-
ative models. DALL-Eval, VISOR (Gokhale et al. 2022),
LAYOUTBENCH (Cho et al. 2023) evaluates spatial rea-
soning abilities. Parallel work T2I CompBench (Huang et al.
2023) also adopts the idea of VQA for accurate composition
evaluations. Although text-to-image model evaluations are
well-explored, they lack concept-specific assessments and
cannot be used for evaluating concept learning. Therefore,
CONCEPTBED attempts to overcome this gap in evaluations
of novel visual concept learning abilities.

6 Conclusion

In this paper, we introduce a novel benchmark called CON-
CEPTBED designed to assess the efficacy of text-conditioned
diffusion models in learning new concepts (a.k.a. person-
alized T2I). The CONCEPTBED benchmark encompasses
an end-to-end evaluation pipeline, a comprehensive concept
library, and a novel Concept Confidence Deviation (CCD)
evaluation metric. We conduct evaluations based on two
key criteria: concept alignment and composition alignment.
Through extensive experiments, we demonstrate that exist-
ing text-conditioned diffusion model-based concept learn-
ers exhibit significant limitations in their performance. We
perform human evaluations to validate the effectiveness of
our proposed evaluation metric (CCD), which showcases a
strong correlation with human preferences. This finding po-
sitions CCD as a viable alternative to human judgments,
enabling large-scale and comprehensive evaluations. CON-
CEPTBED represents the first large-scale concept-learning
dataset that facilitates precise and accurate evaluations of
personalized text-to-image generative models.
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A Social Impact
In this paper, we introduce CONCEPTBED, a novel bench-
mark and evaluation framework designed for conducting
comprehensive studies on few-shot Concept Learning using
T2I diffusion models. Previous evaluations of recent works
in this field have been limited to a small number of test
concepts, thus hindering our understanding of their practical
applicability. Through our benchmark, we demonstrate that
while current concept learners exhibit impressive perfor-
mance, a substantial gap remains that must be addressed. As
pioneers in constructing this extensive evaluation set, we an-
ticipate that future research will incorporate a broader range
of potential concepts. Additionally, we propose a novel eval-
uation metric and framework that can be applied to any con-
cept learning setting, extending its efficacy beyond the con-
fines of CONCEPTBED dataset. Ultimately, this research di-
rectly contributes to the advancement of Human-Level Arti-
ficial Intelligence (HLAI) objectives, fostering the develop-
ment of more robust and capable systems.

B Extended Related Work
Evaluations of T2I Concept Learners. Previous studies
on concept learning have conducted evaluations and model
comparisons using their own test sets. For instance, Textual
Inversion (Gal et al. 2022) employed approximately 20 con-
cepts with around 27 unique compositions, while Dream-
Booth (Ruiz et al. 2022) utilized 30 concepts with 50 unique
compositions. Custom Diffusion (Kumari et al. 2022), on the
other hand, employed 10 concepts with 24 unique composi-
tions. Notably, these works were evaluated on a relatively
small subset of concepts and a limited list of compositions.
In order to address the limitations associated with a central-
ized evaluation set, we introduce the CONCEPTBED dataset,
which consists of 284 concepts and over 33000 composi-
tions. Additionally, we present an automated procedure for
concept and composition collection, enabling the creation of
large-scale datasets.

Downstream Applications of Diffusion Models. In ad-
dition to concept learning, diffusion models have demon-
strated potential for various downstream applications. For
example, approaches such as prompt-to-prompt (Hertz et al.
2022) and DiffEdit (Couairon et al. 2022) have been pro-
posed for image editing tasks. In another case, diffusion-
generated images have shown improvements in ImageNet
accuracy (Azizi et al. 2023). Furthermore, methods similar
to textual inversion have been found to enhance few-shot
classification performance (Trabucco et al. 2023).

Out-of-Distribution Detection and Domain Adapta-
tion/Generalization. While the research directions of out-
of-distribution detection and domain adaptation/generaliza-
tion have been explored independently to a significant ex-
tent, they share a common focus on measuring and control-
ling model confidence. Prior works have employed various
confidence quantification methods, including: 1) Expected
Calibration Error (ECE), which is a popular metric for as-
sessing classifier calibration by measuring the difference be-
tween model accuracy and its probability (Naeini, Cooper,
and Hauskrecht 2015), and 2) Expected Uncertainty Cali-

bration Error (UCE), a recently proposed metric that quanti-
fies the miscalibration of uncertainty by calculating the dif-
ference between model error and its uncertainty (Guo et al.
2017). Given the high variance observed in diffusion mod-
els with respect to hyperparameters, we introduce a novel
method, leveraging the CONCEPTBED dataset, to quantify
generation variances and measure deviations using CCD.
ECE and UCE can serve as alternative metrics for quanti-
fying deviations and evaluating concept learners. Our ex-
perimental results in Appendix G.1 demonstrate that ECE
performs equally well as CCD in assessing concept align-
ment. In the context of concept alignment, ECE and UCE
can be computed based on generated concept-specific im-
ages, without considering the performance on the ground
truth target images. Lower values of these metrics indicate
better performance, albeit at the cost of explainability re-
garding the source of errors (e.g., overconfidence or lack of
confidence in the model). To address these potential ambigu-
ities, we propose CCD, which measures the discrepancy in
probabilities between ground truth and generated concept-
specific images, thereby facilitating a more nuanced under-
standing of the limitations of concept learners.

C Preliminaries on text-conditioned
diffusion models

Diffusion Models: The training procedure of Stable Diffu-
sion can be described as follows: given a training pair (I, y),
the input image I is first mapped to a latent vector z and
get a variably-noised vector zt := αtzt−1 + σtϵ, where
ϵ ∼ N (0, 1) is a noise term and αt, σt are terms that control
the noise schedule and sample quality. At training time, the
time-conditioned UNet is optimized to predict the noise ϵ
and recover the initial z, via conditioning on the text prompt
y, the model is trained with a squared error loss on the pre-
dicted noise term as follows:

Ldiffusion = Ez,ϵ∼N (0,1),t,y

[
||ϵ− ϵθ(z

t, t, y)||22
]

(4)

where t is uniformly sampled from {1, . . . , T}.
At inference time, Stable Diffusion is sampled by iter-

atively denoising zT ∼ N (0, I) conditioned on the text
prompt y. Specifically, at each denoising step t = 1, . . . , T ,
zt−1 is obtained from both zt and the predicted noise term of
UNet whose input is zt and text prompt y. After the final de-
noising step, z0 will be mapped back to yield the generated
image I.

Textual-Inversion (TI): TI uses the pre-trained Stable
Diffusion and fine-tunes it to learn the specific concepts us-
ing a few images. Given a small set of images depicting the
target concept Xc = {xi

c; i ∈ {0, ...,m}}, and with the rare-
token yk (i.e., V*), we want to learn the embedding corre-
sponding to yk. This input-conditioned text can be repre-
sented as “A photo of a V*”.

TI follows the exact same process of Stable Diffusion.
Unlike Stable Diffusion, TI optimizes the text conditional
encoder (Cϕ) with respect to the rarely occurring token yk
using the Latent Diffusion Model (LDM) objective function:



LTI = Ez,ϵ∼N (0,1),t,y

[
||ϵ− ϵθ(z

t, t, Cϕ(y))||22
]

Note that zt is the noised x where x ∈ Xc. Intuitively,
the objective is to correctly remove the added noise (while
training) and optimize Cϕ with respect to yk. At inference
time, a random noise tensor is sampled and a text prompt
(containing the rare-token yk) is used to generate the image
it using fine-tuned Cϕ.

DreamBooth: While textual-inversion can be used to
learn various concepts depending on the training images and
corresponding set of text prompts, DreamBooth is proposed
to learn the specific properties of the target subject: “A photo
of a V* dog”. In the case of DreamBooth, we do not opti-
mize Cϕ and instead, it optimizes ϵθ.

To overcome the challenges (overfitting and language
drift) of fine-tuning the full model, DreamBooth contains the
class-specific prior-preserving loss. Essentially, this method
uses the pre-trained diffusion model generated samples
(Xpr = {x̂i; x̂i = f(ϵ, cpr)}) to supervise the training.
Here, ϵ ∼ N (0, 1) and conditioning vector cpr = Cϕ(“ <
concept− name >′′). Therefore, the proposed loss be-
comes:

LDB = Ez,ϵ∼N (0,1),t,y,x∈Xc

[
||ϵ− ϵθ(z

t, t, Cϕ(y))||22
]

+ λ ∗ Ez,ϵ∼N (0,1),t,ypr,x̂∈Xpr

[
||ϵ− ϵθ(z

t, t, Cϕ(ypr))||22
]

Custom-Diffusion: For single-concept learning, Custom
Diffusion is essentially the combination of Textual Inver-
sion and DreamBooth. The objective function of Custom
Diffusion is the same as DreamBooth but instead of opti-
mizing whole UNet (i.e., ϵθ), Custom Diffusion optimizes
the embedding corresponding to V* from Cϕ and key/value
weights from Cross Attention Layers of the UNet model.

D CONCEPTBED Dataset
D.1 ImageNet Dataset Generation Pipeline
As mentioned in the main text, ImageNet contains 1000
classes but not all of them are used in day-to-day interac-
tions. Moreover, performing experiments on each of these
1000 classes is computationally very extensive as one needs
to train 4000 models and generate 400,000 images. There-
fore, it is important to filter out highly used concepts in daily
life. To measure the real-life- importance we check if any
concept (such as dog) is the subject of the caption prompt
in the whole visual genome dataset. If there exist at least
10 captions having the concept as subject then we add the
concept in CONCEPTBED library. Additionally, the concept
learning methodologies can learn new concepts using as lit-
tle as 4 images. Using all ImageNet images as training data
can potentially add more noise as these images are not high
resolution. Hence, we further filter out the top 100 images
based on the percentage of the object pixels (with a ratio of
at least 0.4) within the image. We provide the Algorithm 2
for readers’ understanding of the data generation pipeline. It
is worth noting that, this pipeline can be used to extend the
CONCEPTBED and even to train the future concept learning
methodologies.

Algorithm 2: CONCEPTBED Object-Concepts Collection
Pipeline

Input: YV G = Visual Genome Captions;
CImageNet = {(c,Xc)}N1 ;

Output: Estimated CCONCEPTBED = {(X̂c, c)}M1
1: Initialize: CConceptBed = []; M = 0
2: for (c,Xc) ∈ CImageNet do
3: count = 0
4: for y ∈ YV G do
5: if subject(y) == c then
6: count = count + 1
7: if count¿=10 then
8: X̂c = []
9: for x ∈ Xc do

10: area = # of pixels(c)
#of total pixels

11: if area >= 0.4 then
12: X̂c ← x
13: X̂c = sorted(X̂c)

14: CCONCEPTBED ← (X̂c[: 100], c)
15: M = M + 1

D.2 Concept Statistics

Our dataset, CONCEPTBED, comprises a total of 284 con-
cepts. Among these concepts, 200 are sourced from the CUB
dataset, 80 from ImageNet, and 4 from PACS. The concepts
and their respective categories are presented in Table 11. We
use the CUB dataset for attribute-level analysis, while the
ImageNet concepts are included to ensure a diversity of con-
cepts.

D.3 Composition Categorization

We leverage the Visual Genome dataset to create composite
prompts for each of the 80 ImageNet concepts. This process
yields over 33,000 compositions, resulting in a rich variety
of prompts. Table 12 provides detailed statistics on the com-
positions for each concept. Furthermore, Figure 5 illustrates
the distribution of composition categories within the CON-
CEPTBED dataset. For the sake of simplicity, CONCEPTBED
contains composite prompts that combine up to two different
compositions. To determine the composition type, we em-
ploy the GPT3 (text-davinci-003) model for few-shot clas-
sification. Figure 6 showcases the instruction and in-context
examples used to categorize each text phrase.

D.4 Question Generations

Rather than relying solely on image-text similarity, we eval-
uate compositions through VQA performance using synthet-
ically generated boolean questions (i.e., yes or no) based on
the composite text phrases. To create these questions, we
manually filter out salient words such as nouns, attributes,
and verbs, and formulate questions corresponding to each of
these words. This process enables the creation of existence-
related questions where the ground truth answer is always
yes. Table 6 provides examples of the questions generated
for different composite text prompts.
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Figure 5: Top-most figure shows the world-cloud of the
CONCEPTBED compositions. Bottom-left figure shows the
statistics of composition categories. Bottom-right figure
shows the statistics of multiple composition categories com-
bined together to generate composite text prompts.

Figure 6: Screenshot depicting few-shot classification using
GPT3. We keep the instruction and few-shot examples con-
stant and change the target phrase to get the corresponding
categories.

Caption Generated Questions

two birds standing on branches are there two birds ?
are there branches ?

tongue hanging out a dog’s mouth is there tongue ?
is there a dog’s mouth ?

cat is licking herself is there cat ?
is the cat licking herself ?

the monkey is holding onto a red bar is there the monkey ?
is there a red bar ?

Propeller blade on an aircraft is there propeller blade ?
is there an aircraft ?

the vine is around clock is there the vine ?
is there clock ?

man driving the boat is there man ?
is there the boat ?

Table 6: Question Generation. Examples of generated
existence-related questions from captions.

E Experimental Setup
Table 7 presents the hyperparameter details for the baseline
methodologies employed in our benchmarking process. To
ensure fair comparisons, we generate images for all con-
cepts using the same number of inference steps and guidance
scale. Specifically, Textual Inversion (SD), DreamBooth,
and Custom Diffusion utilize the Stable Diffusion V1.5 pre-
trained model2. Regarding Textual Inversion, we explore
two variants: 1) Latent Diffusion Model-based, and 2) Sta-
ble Diffusion-based. By incorporating different pre-trained
models, we aim to investigate their impact on learning novel
concepts, and our findings reveal significant differences. For
instance, Textual Inversion (LDM) outperforms Textual In-
version (SD) when learning style as a concept, while the SD
version excels in adapting object-level concepts.

Table 8 outlines the hyperparameter settings for each or-
acle. It is important to note that we can employ any type
of classifier as an oracle, as elaborated in the subsequent
section. In our approach, we initially take pre-trained mod-
els and further, fine-tune them on concepts using the nega-
tive log-likelihood objective. However, it is well-established
that classifiers may exhibit misclassification tendencies with
high confidence. To address this, for ObjectsImageNet, we ad-
ditionally incorporate an outlier-exposure objective func-
tion (Hendrycks, Mazeika, and Dietterich 2019).

F Human Annotations
To evaluate the effectiveness of our CONCEPTBED evalua-
tion framework, we conducted human evaluations consist-
ing of three distinct studies: object-based concept similar-
ity, style-based concept similarity, and traditional image-text
similarity for evaluating compositions. For the object and
style-based concept similarity, we asked participants to rate
the likelihood of the target image being the same as three ref-
erence images on a scale of 1 to 5. A rating of 1 indicated the

2https://huggingface.co/runwayml/stable-diffusion-v1-5



Hyper-Parameter Textual Inversion (LDM) Textual Inversion (SD) DreamBooth Custom Diffusion
Base Model LDM Stable Diffusion - v1.5 Stable Diffusion - v1.5 Stable Diffusion - v1.5
Optimized V* V* UNet V* + CrossAtten(k,v)
Optimization Steps 3000 3000 400 250
Learning Rate 5e-4 5e-4 5e-6 1e-5
Place-Holder Token * <object> sks <new1>
Regularizer - - ✔ ✔
Regularization Images - - 200 200

# if inference steps 50 50 50 50
Guidance Scale 7.5 7.5 7.5 7.5
Noise Scheduler - PNDMScheduler PNDMScheduler PNDMScheduler

Table 7: Hyper-parameters. The table summarizes the different hyper-parameter settings for all baselines considered in this
work to help the reproducibility of results.

Hyper-parameters DomainPACS ObjectImageNet Fine-GrainedCUB Compositions
Model Architecture ResNet18 ConceNeXt-base - ViLT
Pre-training Dataset ImageNet ImageNet - MSCOCO, GCC, SBU, VG
# of target concepts 4 80 200/112 1
Objective Function NLL NLL (w outlier exposure) NLL NLL

Table 8: Oracle Hyper-parameters. This table summarizes the different hyper-parameters used for Oracles. We first take the
pre-trained model weights and then fine-tune them on target concepts from the CONCEPTBED dataset. Here, NLL refers to the
Negative Log-Likelihood.

least similarity, while a rating of 5 indicated an exact match
in terms of concept. We ensured that human annotators did
not compare generated images from different concept learn-
ing strategies; instead, they rated each image independently.
Regarding the composition evaluation, we simply asked an-
notators to rate the image-text similarities on the same 1-5
scale, with 1 representing the least similarity and 5 repre-
senting an exact match. Figures 7, 8, and 9 present screen-
shots of the MTurk interface used for each type of human
evaluation.

To ensure comprehensive coverage, we randomly selected
100 generated images and obtained evaluations from three
unique workers for each image. This resulted in a total of
900 evaluations from human annotators. To assess the re-
lationship between human evaluations and various baseline
evaluation metrics, as well as our CCD method, we computed
Pearson’s correlation. Our findings indicate a strong corre-
lation between the human evaluations and our CCD eval-
uation metric.

G Ablations
G.1 Different Confidence Measures
Table 9 presents a comprehensive comparison of vari-
ous confidence quantification metrics employed in Out-Of-
Distribution (OOD) detection. Notably, all these metrics out-
perform the baseline metrics DINO and KID, as evidenced
by their consistently high correlation scores, reaching an
absolute high correlation of at least 0.9. This implies that
our evaluation framework supports multiple metrics to mea-
sure the alignment as we are performing supervised learning

to train the oracles. Importantly, Accuracy and ECE mea-
sure the performance of a large collection of generated im-
ages. While MSP and CCD measure the performance at the
instance level, which is more useful in practical scenarios
where we don’t have access to a lot of generated images
to estimate the performance. Although MSP also achieves a
high correlation, in some cases, there might be a chance that
an oracle can predict the wrong class with high confidence
(as it is class-label independent). For instance, MSP on do-
main alignment leads to only a 0.14 correlation with human
preferences. Hence, conditional probability is important to
measure the instance-level alignment. It is worth noting that
the negative sign in the correlation coefficients stems from
the inherent differences between the nature of these metrics.
Specifically, lower values of CCD, and ECE indicate better
performance, while higher scores in human evaluations in-
dicate superior performance.

G.2 Choice of Classifiers for Oracles
In Table 10, we explore the impact of utilizing different
types of classifiers as oracles. Our analysis encompasses
four distinct classifiers, each characterized by an increas-
ing number of parameters. Intriguingly, the choice of clas-
sifier appears to have a negligible effect, as CCD consis-
tently demonstrates strong correlations with human scores,
surpassing a Pearson’s correlation of at least −0.98.

H Qualitative Results
Figure 10 presents qualitative examples showcasing the per-
formance of various baseline methods across different style



Models Accuracy (↑) MSP (↑) ECE (↓) CCD(↓)
Textual Inversion (LDM) 80.07% 0.8734 0.0755 0.0955
Textual Inversion (SD) 84.30% 0.9022 0.0623 0.0472
DreamBooth 83.17% 0.8923 0.0647 0.0678
Custom Diffusion 69.73% 0.8311 0.1382 0.2085

Original 89.31% 0.9276 0.0436 -0.0000

Table 9: Possible Confidence Quantification Metrics. This
table summarizes the results using different existing confi-
dence quantification metrics on CONCEPTBED dataset on 80
concepts from ImageNet. Here, MSP refers to the Maximum
Softmax Probability and ECE refers to Expected Calibration
Error.

concepts. Notably, the textual inversion methods demon-
strate limitations in preserving object-specific features and
accurately learning the desired style. Furthermore, both
DreamBooth and Custom Diffusion exhibit challenges in ef-
fectively capturing and reproducing the intended styles. In
Figure 11, we delve into the object-specific learned con-
cepts obtained through the baseline methodologies. Notably,
Custom Diffusion struggles in acquiring and comprehend-
ing new concepts, thus explaining its relatively lower per-
formance in terms of concept alignment. To gain further in-
sights, Figure 12 offers a comparison of the generated im-
ages using Custom Diffusion at different random seeds. The
results indicate that Custom Diffusion successfully gener-
ates the learned concepts in three out of four instances. How-
ever, when tasked with generating concept-specific images
based on composite text prompts, Custom Diffusion strug-
gles to maintain fidelity to the learned concept.

To facilitate a more comprehensive understanding of the
CONCEPTBED benchmark and its results, we have devel-
oped an online results explorer, which provides readers with
a user-friendly interface for exploring and analyzing the
benchmark outcomes.

I Limitations
We introduce the first comprehensive benchmark for large-
scale concept learning, encompassing 284 distinct concepts
and a vast collection of 33,000 composite prompts. How-
ever, there are infinitely many concepts, and evaluating all
of them is next to impossible. Therefore, we recommend
that future works benchmark the novel methodologies with
the combination of both CONCEPTBED and selective qual-
itative examples. While training and evaluating numerous
models on an expanded subset of concepts can be resource-
intensive, our approach, CONCEPTBED, employs an auto-
mated strategy that effortlessly scales to incorporate an ex-
tensive range of concepts. Our benchmark primarily eval-
uates concept learning strategies derived from Stable Diffu-
sion models. However, the dataset and evaluation framework
we present in CONCEPTBED can serve as a good founda-
tion for assessing any text-conditioned concept learners, in-
cluding inversion methodologies. It is important to note that
the limitations inherent to Stable Diffusion models, which
form the core of our experiments, extend to other concept
learners, such as spatial relationships. Hence, while CON-

Models ResNet18 Inception-V4 ViT-Large ConvNeXt

Textual Inversion (LDM) 0.0107 0.0773 0.1165 0.0955
Textual Inversion (SD) -0.0100 0.0201 0.0599 0.0472
DreamBooth 0.0214 0.0485 0.0786 0.0678
Custom Diffusion 0.1538 0.1845 0.2286 0.2085

original 0.0000 0.0000 0.0000 0.0000

Table 10: Effects of different classifiers as Oracles. This
table summarizes the CCD performance based on the differ-
ent types of classifiers across the parameters range.

CEPTBED utilizes composite text prompts pre-trained on
text-to-image models, future work will explore strategies to
enable concept learners to adapt rapidly to novel concepts
and achieve state-of-the-art performance on our benchmark.
In addition to the above, concept learning holds promise for
enhancing performance in various application domains, such
as refining existing concepts to mitigate potential biases
present in Stable Diffusion models and incorporating spatial
relations like left/right. These areas offer fertile ground for
further exploration and can contribute to the advancement of
concept learning techniques. By addressing these limitations
and exploring potential application areas, we aim to pro-
pel the development of concept learning methods that con-
sistently push the boundaries of performance on the CON-
CEPTBED benchmark.



Concept Source Concepts
PACS Art-Painting Cartoon Photo Sketch

ImageNet

langur hand-held computer guenon brambling desktop computer speedboat

titi airship tiger cat organ squirrel monkey bluetick siamang yawl

lifeboat ambulance beagle digital clock fire engine Walker hound gondola

pill bottle fireboat proboscis monkey moving van rotisserie slide rule

Irish wolfhound junco cab magpie robin jeep colobus airliner gibbon

letter opener garbage truck limousine English foxhound borzoi baboon

basset capuchin convertible analog clock redbone canoe spider monkey

bulbul Afghan hound goldfinch patas tabby web site grand piano laptop

chickadee Dutch oven black-and-tan coonhound marmoset chimpanzee macaque

police van tow truck cleaver howler monkey bloodhound pickup house finch

beer bottle notebook water ouzel orangutan Madagascar cat gorilla indri

beach wagon jay indigo bunting

CUB

Black footed Albatross Laysan Albatross Sooty Albatross Groove billed Ani

Crested Auklet Least Auklet Parakeet Auklet Rhinoceros Auklet

Brewer Blackbird Red winged Blackbird Rusty Blackbird Yellow headed Blackbird

Bobolink Indigo Bunting Lazuli Bunting Painted Bunting Cardinal

Spotted Catbird Gray Catbird Yellow breasted Chat Eastern Towhee

Chuck will Widow Brandt Cormorant Red faced Cormorant Pelagic Cormorant

Bronzed Cowbird Shiny Cowbird Brown Creeper American Crow Fish Crow

Black billed Cuckoo Mangrove Cuckoo Yellow billed Cuckoo

Gray crowned Rosy Finch Purple Finch Northern Flicker Acadian Flycatcher

Great Crested Flycatcher Least Flycatcher Olive sided Flycatcher

Scissor tailed Flycatcher Vermilion Flycatcher Yellow bellied Flycatcher

Frigatebird Northern Fulmar Gadwall American Goldfinch European Goldfinch

Boat tailed Grackle Eared Grebe Horned Grebe Pied billed Grebe Western Grebe

Blue Grosbeak Evening Grosbeak Pine Grosbeak Rose breasted Grosbeak

Pigeon Guillemot California Gull Glaucous winged Gull Heermann Gull

Herring Gull Ivory Gull Ring billed Gull Slaty backed Gull Western Gull

Anna Hummingbird Ruby throated Hummingbird Rufous Hummingbird Green Violetear

Long tailed Jaeger Pomarine Jaeger Blue Jay Florida Jay Green Jay

Dark eyed Junco Tropical Kingbird Gray Kingbird Belted Kingfisher

Green Kingfisher Pied Kingfisher Ringed Kingfisher White breasted Kingfisher

Red legged Kittiwake Horned Lark Pacific Loon Mallard Western Meadowlark

Hooded Merganser Red breasted Merganser Mockingbird Nighthawk

Clark Nutcracker White breasted Nuthatch Baltimore Oriole Hooded Oriole

Orchard Oriole Scott Oriole Ovenbird Brown Pelican White Pelican

Western Wood Pewee Sayornis American Pipit Whip poor Will Horned Puffin

Common Raven White necked Raven American Redstart Geococcyx

Loggerhead Shrike Great Grey Shrike Baird Sparrow Black throated Sparrow

Brewer Sparrow Chipping Sparrow Clay colored Sparrow House Sparrow

Field Sparrow Fox Sparrow Grasshopper Sparrow Harris Sparrow Henslow Sparrow

Le Conte Sparrow Lincoln Sparrow Nelson Sharp tailed Sparrow Savannah Sparrow

Seaside Sparrow Song Sparrow Tree Sparrow Vesper Sparrow

White crowned Sparrow White throated Sparrow Cape Glossy Starling Bank Swallow

Barn Swallow Cliff Swallow Tree Swallow Scarlet Tanager Summer Tanager

Artic Tern Black Tern Caspian Tern Common Tern Elegant Tern Forsters Tern

Least Tern Green tailed Towhee Brown Thrasher Sage Thrasher

Black capped Vireo Blue headed Vireo Philadelphia Vireo Red eyed Vireo

Warbling Vireo White eyed Vireo Yellow throated Vireo Bay breasted Warbler

Black and white Warbler Black throated Blue Warbler Blue winged Warbler

Canada Warbler Cape May Warbler Cerulean Warbler Chestnut sided Warbler

Golden winged Warbler Hooded Warbler Kentucky Warbler Magnolia Warbler

Mourning Warbler Myrtle Warbler Nashville Warbler Orange crowned Warbler

Palm Warbler Pine Warbler Prairie Warbler Prothonotary Warbler

Swainson Warbler Tennessee Warbler Wilson Warbler Worm eating Warbler

Yellow Warbler Northern Waterthrush Louisiana Waterthrush Bohemian Waxwing

Cedar Waxwing American Three toed Woodpecker Pileated Woodpecker

Red bellied Woodpecker Red cockaded Woodpecker Red headed Woodpecker

Downy Woodpecker Bewick Wren Cactus Wren Carolina Wren House Wren Marsh Wren

Rock Wren Winter Wren Common Yellowthroat

Table 11: List of all concepts from CONCEPTBED library based on their data source.



Concept Action Attribute Counting Relation Overall

laptop 17 18 2 40 52
tow truck 97 348 35 409 645
hand-held computer 17 18 2 40 52
gorilla 9 11 0 11 19
chimpanzee 9 11 0 11 19
pickup 97 348 35 409 645
yawl 116 178 36 466 567
beagle 380 807 24 496 1222
bulbul 62 270 11 142 374
spider monkey 9 11 0 11 19
borzoi 380 807 24 496 1222
analog clock 1 61 10 71 109
letter opener 11 10 0 21 31
water ouzel 62 270 11 142 374
web site 17 18 2 40 52
garbage truck 97 348 35 409 645
bloodhound 380 807 24 496 1222
basset 380 807 24 496 1222
proboscis monkey 9 11 0 11 19
Dutch oven 58 85 13 111 194
fireboat 116 178 36 466 567
black-and-tan coonhound 380 807 24 496 1222
speedboat 116 178 36 466 567
beach wagon 98 213 17 363 497
airliner 4 8 2 11 20
titi 9 11 0 11 19
marmoset 9 11 0 11 19
beer bottle 1 9 0 14 20
magpie 62 270 11 142 374
Irish wolfhound 380 807 24 496 1222
lifeboat 116 178 36 466 567
brambling 62 270 11 142 374
rotisserie 58 85 13 111 194
junco 62 270 11 142 374
ambulance 98 213 17 363 497
gondola 116 178 36 466 567
tabby 424 992 42 727 1592
cleaver 11 10 0 21 31
limousine 98 213 17 363 497
desktop computer 17 18 2 40 52
colobus 9 11 0 11 19
house finch 62 270 11 142 374
chickadee 62 270 11 142 374
cab 98 213 17 363 497
notebook 17 18 2 40 52
squirrel monkey 9 11 0 11 19
digital clock 1 61 10 71 109
canoe 116 178 36 466 567
indri 9 11 0 11 19
English foxhound 380 807 24 496 1222
airship 4 8 2 11 20
capuchin 9 11 0 11 19
tiger cat 424 992 42 727 1592
bluetick 380 807 24 496 1222
Afghan hound 380 807 24 496 1222
moving van 97 348 35 409 645
jay 62 270 11 142 374
police van 97 348 35 409 645
howler monkey 9 11 0 11 19
langur 9 11 0 11 19
gibbon 9 11 0 11 19
redbone 380 807 24 496 1222
organ 3 24 12 41 68
slide rule 17 18 2 40 52
goldfinch 62 270 11 142 374
pill bottle 1 9 0 14 20
siamang 9 11 0 11 19
convertible 98 213 17 363 497
baboon 9 11 0 11 19
Walker hound 380 807 24 496 1222
guenon 9 11 0 11 19
indigo bunting 62 270 11 142 374
grand piano 3 24 12 41 68
fire engine 97 348 35 409 645
robin 62 270 11 142 374
macaque 9 11 0 11 19
orangutan 9 11 0 11 19
jeep 98 213 17 363 497
patas 9 11 0 11 19
Madagascar cat 9 11 0 11 19

Table 12: This table shows the composition statistics by categories. Here, overall means the unique compositions per concept
and less than or equal to the sum of all four compositions as one composite prompt can belong up to two composition categories.



Figure 7: An example of human annotation for determining the concept alignment for object-specific concepts.

Figure 8: An example of human annotation for determining the concept alignment for style-specific concepts.



Figure 9: The example of Human Annotation for determining the image-text alignment.



A photo of a guitar in the style of V*

Textual Inversion (LDM) Textual Inversion (SD) DreamBooth Custom DiffusionInput Reference Concepts: V*

A photo of an elephant in the style of V*

A photo of a giraffe in the style of V*

A photo of a person in the style of V*

Figure 10: Qualitative examples of the style-specific four concepts.



A photo of V*

Textual Inversion (LDM) Textual Inversion (SD) DreamBooth Custom DiffusionInput Reference Concepts: V*

A photo of V*

A photo of V*

A photo of V*

Figure 11: Qualitative examples of the object-specific four concepts.



Figure 12: Qualitative examples from Custom Diffusions at different random seeds. The leftmost four figures are the target
concept images. Top-Right four images are object-specific generated images. While Bottom-Right four generated images are
on different composite text prompts.


